### The EMC Mission.....

#### In response to <u>operational requirements</u>:

- Maintain operational model suite
  - The scientific correctness and integrity of operational forecast modeling systems
  - Modify current operational system to adapt to ever-present external changes
- Enhance numerical guidance
  - Test and improve NCEP's numerical forecast model systems via
    - Scientific upgrades
    - Tuning
    - Additional observations
- Transition and Develop operational numerical forecast models from research to operations
  - Transform & integrate
    - Code
    - Algorithms
    - Techniques
  - Manages and executes transition process including
    - Government technical and system performance review before implementation





NOAH Land Surface Model

# Linkage of Model Systems Within Production Suite





### Process to Implement Major Upgrades to The Production Suite



#### **NCO Takes Handoff**

- SPA's build NCO parallel from RFC's
- 30-day NCO parallel
  - Test code stability
  - Test dataflow
  - Products to NCEP Centers and EMC code developers
- NCEP Centers
  - Evaluate impact
  - Assessments to NCEP
- •30-day NCO parallel stable
- NCEP centers approve
- Briefing to NCEP Director for final approval

Implementation

# Apply Implementation Processes to GFS/GSI Phase 1 Implementation Below...

- December 2009 upgrade
- Adding new observation data sources.
  - Tropical storm pseudo sea-level pressure obs
  - NOAA19 hirs/4,AMSU-A, & MHS brightness temp obs
  - NOAA18 sbuv/2. Monitor N19 GOME, and OMI ozone (no assimilation)
  - RARS (currently only EARS) 1B data
  - EUMETSAT-9 atm motion vectors
- Implementing improved techniques in GSI analysis.
  - Use uniform thinning mesh for brightness temp data
  - Improvements to assimilation of GPS RO data (QC, retune ob errors, improved forward operator)
  - Add dry mass pressure constraint
  - Merge GMAO & EMC codes for 4d-var capability
  - Update background error covariance
  - Proper use of different spectral truncation between background and analysis
- Benefits
  - Improved GFS tropical storm track & intensity forecasts
  - Small improvement in global forecast accuracy





### Resources Required for GFS/GSI Phase 1 Implementation

- >17 months required to develop, test and implement
- > 119 person months of effort (EMC, NCO, GFDL, TPC, SPC, HPC, AWC)
- ► 17 months of fully cycled 4x/day with 16 day forecasts retrospective/real-time testing conducted
- >508 HWRF and 600 GFDL cases simulated
- > 1000 node hours and 75 TB of disk consumed

### NCEP Hurricane Forecast System—Regional Component



# Preparation for FY10 HWRF (H210) Implementation

#### 1. DTC V3 HWRF:

- Desire to use V3 based system to be deposited in DTC repository
- V3 HWRF experiencing spurious TC genesis on outer domain
- EMC and DTC working to diagnose problem
- DTC goal to have frozen code 15 December
- May have to accept degraded V3 system for HWRF tutorial Feb 2010

#### 2. NCEP/EMC FY10 (H210)

- Will be based on V3 if spurious TC genesis problem corrected
- Contingency plan: H210 baseline will be operational HWRF scheduled for operational implementation on 10 November

#### 3. Testing for GFS Phase1 Implementation:

- Must be conducted with H208 physics configuration
- All experiments will use 10 November HWRF Implementation
- Qingfu working with Morris & Bob to adjust HWRF initialization
- Testing completed 30 November to support GFS Phase 1 Implementation scheduled for 15 December

# Proposed Test Plan for FY10 HWRF Implementation (H210)

- 4. Test/verify positive impact of bug fixes in H208:
  - Land Surface Temperature
  - Solar radiation
  - Non-hydrostatic advection of vertical velocity
- 5. Configuration & Testing for H210:
  - Must take a systematic approach
  - Define priorities
    - a) Reduction of intensity bias
      - Initialization Procedure (0-12h intensity bias)
      - Surface fluxes (+24h intensity bias)
    - b) Improve physics
      - Addition of gravity wave drag
      - Modification of shallow convection
      - HYCOM coupling
  - Enhance model diagnostic capabilities to accelerate HWRF development
    - •TPC visiting Hurricane Specialist to EMC during cols season?
    - •EMC visiting HWRF scientist(s) to TPC during hurricane season?
    - Ties with HFIP community (DeMaria et al.)

### GFS and HWRF Implementation Schedule Updated 12 October 2009





### Key questions to be addressed by the HFIP for success in HFS/GFS improvements:

- At 1-km or less grid resolution which physical processes are crucial to the intensity change problem and are they predictable on the time scales needed? What is the necessary vertical resolution vs. horizontal?
- What is the appropriate physics package and what complexity is essential to address the intensity change problem (e.g. atmosphere-ocean boundary layer, microphysics, radiation)
- What is the best way to determine predictability with reference to the forecast metrics? Can ensembles be used to increase the predictability and at what scales?
- What is the best way to develop ensembles for the intensity change problem, i.e., multi-models, different physics packages, different initial conditions?

# Steps required to address the HFS/GFS modeling systems to accurately represent the physical processes responsible for rapid intensity change:

### Develop, test, and implement:

- Near (~5 years) and long term (~10-15 years) high resolution (1 km), non-hydrostatic HFS and establish baseline performance for track, intensity, and rapid intensity change
  - Next-generation high-resolution GFS (10 km) to improve track guidance,
  - HFS, GFS, and multi-model ensembles to quantify and bound uncertainty, and
- Next-generation storm surge modeling system

#### Research & Development Strategies for HFS/GFS:

- Research to insure the physical processes are represented accurately, and assess how these processes influence the predictability of track and intensity changes, particularly rapid intensity change,
- Research and development to enhance modeling techniques (e.g., high-resolution, data assimilation, ensembles, on-demand computing), and 11
- Develop and implement High Performance Computing strategy for

### Improving the Operational HRS at NOAA/NCEP to Better Serve Customers....

FY07 FY08 FY09 FY10 FY11 FY12 FY13 FY14

Initialization/DA
Resolution 9km to 4km to 1km?
Coupling—atm/ocean/waves/surge
Physics—ocean, PBL, precipitation, clouds, radiation
Ensembles—global, regional, moving nests?

EMC HRS Staff ~ 10 (includes ocean, GFS and HWRF)
HPC availability (what lies beyond P6?)
Technological advances in the above
Maintenance of HRS—must leverage off production suite

### Regional Model Initialization

- Factors for change
  - Global Models increasing resolution
  - Need to improve 3D vortex dynamic/thermodynamic structure
  - Need for cycling in DA system
  - Observations in vicinity of and surrounding vortex
  - Adopting coupled atm/ocean systems

### Requirements

- Advanced DA methodology that is computationally affordable and can be applied at high resolution
- Coupled atm/ocean DA
- Must not forget about model physics

#### •Higher Resolution:

- Currently at 9km
- Testing at 4km in 2009 not very encouraging
- •Where to place emphasis for future HWRF upgrades next 5 years?

### NWS Seamless Suite of Forecast **Products Spanning Weather and Climate**

